enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    For example, from the differential equation definition, e x ex = 1 when x = 0 and its derivative using the product rule is e x exe x ex = 0 for all x, so e x ex = 1 for all x. From any of these definitions it can be shown that the exponential function obeys the basic exponentiation identity.

  3. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is

  4. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f ( x ) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ⁡ ( y , x ) {\textstyle \arctan(y,x)} .

  6. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    representing the area between the rectangular hyperbola = and the x-axis, was a logarithmic function, whose base was eventually discovered to be the transcendental number e. The modern notation for the value of this definite integral is ln ⁡ ( x ) {\displaystyle \ln(x)} , the natural logarithm.

  7. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.

  8. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Define e x as the value of the infinite series = =! = + +! +! +! + (Here n! denotes the factorial of n. One proof that e is irrational uses a special case of this formula.) Inverse of logarithm integral.

  9. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    e aX e bX = e (a + b)X; e X eX = I; Using the above results, we can easily verify the following claims. If X is symmetric then e X is also symmetric, and if X is skew-symmetric then e X is orthogonal. If X is Hermitian then e X is also Hermitian, and if X is skew-Hermitian then e X is unitary.