enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The complement of the standard normal cumulative distribution function, () = (), is often called the Q-function, especially in engineering texts. [ 13 ] [ 14 ] It gives the probability that the value of a standard normal random variable X {\textstyle X} will exceed x {\textstyle x} : P ( X > x ) {\textstyle P(X>x)} .

  3. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    If () is a general scalar-valued function of a normal vector, its probability density function, cumulative distribution function, and inverse cumulative distribution function can be computed with the numerical method of ray-tracing (Matlab code).

  4. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  5. Truncated normal distribution - Wikipedia

    en.wikipedia.org/wiki/Truncated_normal_distribution

    Nielsen [3] reported closed-form formula for calculating the Kullback-Leibler divergence and the Bhattacharyya distance between two truncated normal distributions with the support of the first distribution nested into the support of the second distribution.

  6. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    Examples are the simple gravitation law connecting masses and distance with the resulting force, or the formula for equilibrium concentrations of chemicals in a solution that connects concentrations of educts and products. Assuming log-normal distributions of the variables involved leads to consistent models in these cases.

  7. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    A large standard deviation indicates that the data points can spread far from the mean and a small standard deviation indicates that they are clustered closely around the mean. For example, each of the three populations {0, 0, 14, 14}, {0, 6, 8, 14} and {6, 6, 8, 8} has a mean of 7. Their standard deviations are 7, 5, and 1, respectively.

  8. Triangular distribution - Wikipedia

    en.wikipedia.org/wiki/Triangular_distribution

    This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]

  9. Gumbel distribution - Wikipedia

    en.wikipedia.org/wiki/Gumbel_distribution

    The standard Gumbel distribution is the case where = and = with cumulative distribution function = ()and probability density function = (+).In this case the mode is 0, the median is ⁡ (⁡ ()), the mean is (the Euler–Mascheroni constant), and the standard deviation is /