Search results
Results from the WOW.Com Content Network
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().
The exponentially modified Gaussian distribution, a convolution of a normal distribution with an exponential distribution, and the Gaussian minus exponential distribution, a convolution of a normal distribution with the negative of an exponential distribution. The expectile distribution, which nests the Gaussian distribution in the symmetric case.
In this example, the ratio (probability of living during an interval) / (duration of the interval) is approximately constant, and equal to 2 per hour (or 2 hour −1). For example, there is 0.02 probability of dying in the 0.01-hour interval between 5 and 5.01 hours, and (0.02 probability / 0.01 hours) = 2 hour −1.
Beta distribution, for a single probability (real number between 0 and 1); conjugate to the Bernoulli distribution and binomial distribution; Gamma distribution, for a non-negative scaling parameter; conjugate to the rate parameter of a Poisson distribution or exponential distribution, the precision (inverse variance) of a normal distribution, etc.
This function is real-valued because it corresponds to a random variable that is symmetric around the origin; however characteristic functions may generally be complex-valued. In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution.
Some examples include: In statistics and probability theory, Gaussian functions appear as the density function of the normal distribution, which is a limiting probability distribution of complicated sums, according to the central limit theorem.
The fact that two random variables and both have a normal distribution does not imply that the pair (,) has a joint normal distribution. A simple example is one in which X has a normal distribution with expected value 0 and variance 1, and = if | | > and = if | | <, where >. There are similar counterexamples for more than two random variables.
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.