Search results
Results from the WOW.Com Content Network
The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero. This is the inverse ...
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then
The strong real Jacobian conjecture was that a real polynomial map with a nowhere vanishing Jacobian determinant has a smooth global inverse. That is equivalent to asking whether such a map is topologically a proper map , in which case it is a covering map of a simply connected manifold , hence invertible.
The Jacobian at a point gives the best linear approximation of the distorted parallelogram near that point (right, in translucent white), and the Jacobian determinant gives the ratio of the area of the approximating parallelogram to that of the original square.
that is, the determinant of the Jacobian of the transformation. [1] A scalar density refers to the w = 1 {\displaystyle w=1} case. Relative scalars are an important special case of the more general concept of a relative tensor .
Jacobian matrix and determinant – Matrix of all first-order partial derivatives of a vector-valued function List of canonical coordinate transformations Sphere – Set of points equidistant from a center
Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1] Using the Jacobian determinant and the corresponding change of variable that it gives is the basis of coordinate systems such as polar, cylindrical, and spherical coordinate systems.
In mathematics, a Jacobian, named for Carl Gustav Jacob Jacobi, may refer to: Jacobian matrix and determinant (and in particular, the robot Jacobian ) Jacobian elliptic functions