Search results
Results from the WOW.Com Content Network
μ is the growth rate of a considered microorganism, μ max is the maximum growth rate of this microorganism, [S] is the concentration of the limiting substrate S for growth, K s is the "half-velocity constant"—the value of [S] when μ/μ max = 0.5. μ max and K s are empirical (experimental) coefficients to the Monod equation. They will ...
For example, 2 tetrated to 4 (or the fourth tetration of 2) is = = = =. It is the next hyperoperation after exponentiation , but before pentation . The word was coined by Reuben Louis Goodstein from tetra- (four) and iteration .
Exponential growth is the inverse of logarithmic growth. Not all cases of growth at an always increasing rate are instances of exponential growth. For example the function () = grows at an ever increasing rate, but is much slower than growing
The growth rate of the microorganism is controlled by manipulation of the inflow of fresh medium, while the population density is regulated through changing the concentration of the limiting nutrient. This open system allows researchers to maintain the exponential growth phase of cells for use in physiological experiments. [1]
For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...
In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length n .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Another example of hyperbolic growth can be found in queueing theory: the average waiting time of randomly arriving customers grows hyperbolically as a function of the average load ratio of the server. The singularity in this case occurs when the average amount of work arriving to the server equals the server's processing capacity.