Search results
Results from the WOW.Com Content Network
In more recent years, computer programs have been used to find and calculate more precise approximations of the perimeter of an ellipse. In an online video about the perimeter of an ellipse, recreational mathematician and YouTuber Matt Parker, using a computer program, calculated numerous approximations for the perimeter of an ellipse. [4]
A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden.
In geometry, the circumference (from Latin circumferens, meaning "carrying around") is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. [1] More generally, the perimeter is the curve length around any closed figure.
The hydraulic diameter is the equivalent circular configuration with the same circumference as the wetted perimeter. The area of a circle of radius R is . Given the area of a non-circular object A, one can calculate its area-equivalent radius by setting = or, alternatively:
The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis ( minor semiaxis ) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic ...
P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon by shear stress from the fluid. [3]
Given a circle, let u n be the perimeter of an inscribed regular n-gon, and let U n be the perimeter of a circumscribed regular n-gon. Then u n and U n are lower and upper bounds for the circumference of the circle that become sharper and sharper as n increases, and their average (u n + U n)/2 is an especially good approximation to the ...
where L is the perimeter of the lemniscate of Bernoulli with focal distance c. V = 4 3 π r 3 {\displaystyle V={4 \over 3}\pi r^{3}} where V is the volume of a sphere and r is the radius.