Search results
Results from the WOW.Com Content Network
Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal to 0) is used. For IEEE standard where the base is , this means when there is a tie it is rounded so that the last digit is equal to .
The IEEE 754 specification—followed by all modern floating-point hardware—requires that the result of an elementary arithmetic operation (addition, subtraction, multiplication, division, and square root since 1985, and FMA since 2008) be correctly rounded, which implies that in rounding to nearest, the rounded result is within 0.5 ulp of ...
round to nearest, where ties round to the nearest even digit in the required position (the default and by far the most common mode) round to nearest, where ties round away from zero (optional for binary floating-point and commonly used in decimal) round up (toward +∞; negative results thus round toward zero)
This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.
In a guideline issued in mid-1966, [49] the U.S. Office of the Federal Coordinator for Meteorology determined that weather data should be rounded to the nearest round number, with the "round half up" tie-breaking rule. For example, 1.5 rounded to integer should become 2, and −1.5 should become −1.
Round to Nearest – rounds to the nearest value; if the number falls midway it is rounded to the nearest value with an even (zero) least significant bit, which means it is rounded up 50% of the time (in IEEE 754-2008 this mode is called roundTiesToEven to distinguish it from another round-to-nearest mode) Round toward 0 – directed rounding ...
GCE-Math is a version of C/C++ math functions written for C++ constexpr (compile-time calculation) CORE-MATH, correctly rounded for single and double precision. SIMD (vectorized) math libraries include SLEEF, Yeppp!, and Agner Fog's VCL, plus a few closed-source ones like SVML and DirectXMath. [9]
However the "round to nearest integer, and round ties towards zero" has mathematical applications (notably when computing the shortest continuous fractions of any rational number) because of its symetry: the round to nearest property allows the continuous fractions to be reduced to the smallest form (with less terms), and the symetry allows a ...