Search results
Results from the WOW.Com Content Network
A projection-valued measure (PVM) is formally similar to a real-valued measure, except that its values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert ...
In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum ...
Depending on the source, the resolution of the identity is defined, either as a projection-valued measure , [4] or as a one-parameter family of projection-valued measures {} with < <. [ 5 ]
In functional analysis and quantum measurement theory, a positive-operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalisation of projection-valued measures (PVMs) and, correspondingly, quantum measurements described by POVMs are a generalisation of quantum ...
A positive operator-valued measure E then assigns each i a positive semidefinite m × m matrix . Naimark's theorem now states that there is a projection-valued measure on X whose restriction is E. Of particular interest is the special case when = where I is the identity operator.
A measure that takes values in the set of self-adjoint projections on a Hilbert space is called a projection-valued measure; these are used in functional analysis for the spectral theorem. When it is necessary to distinguish the usual measures which take non-negative values from generalizations, the term positive measure is used.
Furthermore, the measure of the empty set is required to be 0. A simple example is a volume (how big an object occupies a space) as a measure. In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events ...
The characteristic property of the von Neumann measurement scheme is that repeating the same measurement will give the same results. This is also called the projection postulate. A more general formulation replaces the projection-valued measure with a positive-operator valued measure (POVM). To illustrate, take again the finite-dimensional case.