enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phase reduction - Wikipedia

    en.wikipedia.org/wiki/Phase_reduction

    Phase reduction is a method used to reduce a multi-dimensional dynamical equation describing a nonlinear limit cycle oscillator into a one-dimensional phase equation. [1] [2] Many phenomena in our world such as chemical reactions, electric circuits, mechanical vibrations, cardiac cells, and spiking neurons are examples of rhythmic phenomena, and can be considered as nonlinear limit cycle ...

  3. Phase rule - Wikipedia

    en.wikipedia.org/wiki/Phase_rule

    In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125

  4. Reaction progress kinetic analysis - Wikipedia

    en.wikipedia.org/wiki/Reaction_progress_kinetic...

    In the slightly more complex situation where two substrates bind in sequence followed by product release: ⁠ d [P] / dt ⁠ = ⁠ K 1 K 2 k 3 [A][B][Cat] / 1 + K 1 [A] + K 1 K 2 [A][B] ⁠ In the case of the simple pre-equilibrium conditions described above, the catalyst resting state is either entirely or partially (depending on the magnitude ...

  5. Reaction mechanism - Wikipedia

    en.wikipedia.org/wiki/Reaction_mechanism

    Instead, the slow step involves two molecules of NO 2. A possible mechanism for the overall reaction that explains the rate law is: 2 NO 2 → NO 3 + NO (slow) NO 3 + CO → NO 2 + CO 2 (fast) Each step is called an elementary step, and each has its own rate law and molecularity. The sum of the elementary steps gives the net reaction.

  6. Schreinemaker's analysis - Wikipedia

    en.wikipedia.org/wiki/Schreinemaker's_analysis

    There are many correct collections of "Schreinemaker's rules" and the choice to use a given set of rules depends on the nature of the phase diagrams being created. Due to the phrasing of the Morey–Schreinemaker coincidence theorem, only one rule is essential to the Schreinemaker's rules. This is the so-called metastable extensions rule: [1]

  7. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations: Swapping two rows, Multiplying a row by a nonzero number, Adding a multiple of one row to ...

  8. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    Figure 5: Bode gain plot to find phase margin; scales are logarithmic, so labeled separations are multiplicative factors. For example, f 0 dB = βA 0 × f 1. Next, the choice of pole ratio τ 1 /τ 2 is related to the phase margin of the feedback amplifier. [9] The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode ...

  9. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    As an example, consider the gas-phase reaction NO 2 + CO → NO + CO 2.If this reaction occurred in a single step, its reaction rate (r) would be proportional to the rate of collisions between NO 2 and CO molecules: r = k[NO 2][CO], where k is the reaction rate constant, and square brackets indicate a molar concentration.