Search results
Results from the WOW.Com Content Network
Cronbach's alpha (Cronbach's ), also known as tau-equivalent reliability or coefficient alpha (coefficient ), is a reliability coefficient and a measure of the internal consistency of tests and measures. [1] [2] [3] It was named after the American psychologist Lee Cronbach.
Alpha is also a function of the number of items, so shorter scales will often have lower reliability estimates yet still be preferable in many situations because they are lower burden. An alternative way of thinking about internal consistency is that it is the extent to which all of the items of a test measure the same latent variable .
The most common internal consistency measure is Cronbach's alpha, which is usually interpreted as the mean of all possible split-half coefficients. [9] Cronbach's alpha is a generalization of an earlier form of estimating internal consistency, Kuder–Richardson Formula 20. [9]
Krippendorff's alpha [16] [17] is a versatile statistic that assesses the agreement achieved among observers who categorize, evaluate, or measure a given set of objects in terms of the values of a variable. It generalizes several specialized agreement coefficients by accepting any number of observers, being applicable to nominal, ordinal ...
For the reliability of a two-item test, the formula is more appropriate than Cronbach's alpha (used in this way, the Spearman-Brown formula is also called "standardized Cronbach's alpha", as it is the same as Cronbach's alpha computed using the average item intercorrelation and unit-item variance, rather than the average item covariance and ...
It is a special case of Cronbach's α, computed for dichotomous scores. [2] [3] It is often claimed that a high KR-20 coefficient (e.g., > 0.90) indicates a homogeneous test. However, like Cronbach's α, homogeneity (that is, unidimensionality) is actually an assumption, not a conclusion, of reliability coefficients.
If the correlation between separate administrations of the test is high (e.g. 0.7 or higher as in this Cronbach's alpha-internal consistency-table [6]), then it has good test–retest reliability. The repeatability coefficient is a precision measure which represents the value below which the absolute difference between two repeated test results ...
Cronbach's can be shown to provide a lower bound for reliability under rather mild assumptions. [citation needed] Thus, the reliability of test scores in a population is always higher than the value of Cronbach's in that population. Thus, this method is empirically feasible and, as a result, it is very popular among researchers.