Search results
Results from the WOW.Com Content Network
A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex that is not contained in the base. A cone is formed by a set of line segments, half-lines, or lines connecting a common point, the apex, to all of the points on a base. In the ...
The cone over a closed interval I of the real line is a filled-in triangle (with one of the edges being I), otherwise known as a 2-simplex (see the final example). The cone over a polygon P is a pyramid with base P. The cone over a disk is the solid cone of classical geometry (hence the concept's name). The cone over a circle given by
The extended base of a triangle (a particular case of an extended side) is the line that contains the base. When the triangle is obtuse and the base is chosen to be one of the sides adjacent to the obtuse angle , then the altitude dropped perpendicularly from the apex to the base intersects the extended base outside of the triangle.
In geometry, a bicone or dicone (from Latin: bi-, and Greek: di-, both meaning "two") is the three-dimensional surface of revolution of a rhombus around one of its axes of symmetry.
An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane.It is also a spherical segment of one base, i.e., bounded by a single plane.
In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The formula for the volume of a pyramidal square frustum was introduced by the ancient Egyptian mathematics in what is called the Moscow Mathematical Papyrus, written in the 13th dynasty (c. 1850 BC): = (+ +), where a and b are the base and top side lengths, and h is the height.