enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mixed radix - Wikipedia

    en.wikipedia.org/wiki/Mixed_radix

    The most familiar example of mixed-radix systems is in timekeeping and calendars. Western time radices include, both cardinally and ordinally, decimal years, decades, and centuries, septenary for days in a week, duodecimal months in a year, bases 28–31 for days within a month, as well as base 52 for weeks in a year.

  3. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    General mixed radix systems were studied by Georg Cantor. [2] The term "factorial number system" is used by Knuth, [3] while the French equivalent "numération factorielle" was first used in 1888. [4] The term "factoradic", which is a portmanteau of factorial and mixed radix, appears to be of more recent date. [5]

  4. Non-standard positional numeral systems - Wikipedia

    en.wikipedia.org/wiki/Non-standard_positional...

    In some systems, while the base is a positive integer, negative digits are allowed. Non-adjacent form is a particular system where the base is b = 2.In the balanced ternary system, the base is b = 3, and the numerals have the values −1, 0 and +1 (rather than 0, 1 and 2 as in the standard ternary system, or 1, 2 and 3 as in the bijective ternary system).

  5. List of numeral systems - Wikipedia

    en.wikipedia.org/wiki/List_of_numeral_systems

    "A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system." [1]: 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. [1]

  6. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    More general is using a mixed radix notation (here written little-endian) like for + +, etc. This is used in Punycode , one aspect of which is the representation of a sequence of non-negative integers of arbitrary size in the form of a sequence without delimiters, of "digits" from a collection of 36: a–z and 0–9, representing 0–25 and 26 ...

  7. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    In some cases, such as with a negative base, the radix is the absolute value = | | of the base b. For example, for the decimal system the radix (and base) is ten, because it uses the ten digits from 0 through 9. When a number "hits" 9, the next number will not be another different symbol, but a "1" followed by a "0".

  8. Radix - Wikipedia

    en.wikipedia.org/wiki/Radix

    In a positional numeral system, the radix (pl.: radices) or base is the number of unique digits, including the digit zero, used to represent numbers.For example, for the decimal system (the most common system in use today) the radix is ten, because it uses the ten digits from 0 through 9.

  9. Optimal radix choice - Wikipedia

    en.wikipedia.org/wiki/Optimal_radix_choice

    For example, 100 in decimal has three digits, so its cost of representation is 10×3 = 30, while its binary representation has seven digits (1100100 2), so the analogous calculation gives 2×7 = 14. Likewise, in base 3 its representation has five digits (10201 3 ), for a value of 3×5 = 15, and in base 36 (2S 36 ) one finds 36×2 = 72.