Search results
Results from the WOW.Com Content Network
Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...
Multilevel models (also known as hierarchical linear models, linear mixed-effect models, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. [1]
In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution.Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution.
Later, GLaM [36] demonstrated a language model with 1.2 trillion parameters, each MoE layer using top-2 out of 64 experts. Switch Transformers [21] use top-1 in all MoE layers. The NLLB-200 by Meta AI is a machine translation model for 200 languages. [37] Each MoE layer uses a hierarchical MoE with two levels.
The hierarchical hidden Markov model (HHMM) is a statistical model derived from the hidden Markov model (HMM). In an HHMM, each state is considered to be a self-contained probabilistic model. More precisely, each state of the HHMM is itself an HHMM. HHMMs and HMMs are useful in many fields, including pattern recognition. [1] [2]
Engine for Likelihood-Free Inference. ELFI is a statistical software package written in Python for Approximate Bayesian Computation (ABC), also known e.g. as likelihood-free inference, simulator-based inference, approximative Bayesian inference etc. [83] ABCpy: Python package for ABC and other likelihood-free inference schemes.
The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri
Bayesian model averaging (BMA) makes predictions by averaging the predictions of models weighted by their posterior probabilities given the data. [22] BMA is known to generally give better answers than a single model, obtained, e.g., via stepwise regression , especially where very different models have nearly identical performance in the ...