Search results
Results from the WOW.Com Content Network
Cherenkov radiation glowing in the core of the Advanced Test Reactor at Idaho National Laboratory. Cherenkov radiation (/ tʃ ə ˈ r ɛ ŋ k ɒ f / [1]) is electromagnetic radiation emitted when a charged particle (such as an electron) passes through a dielectric medium (such as distilled water) at a speed greater than the phase velocity (speed of propagation of a wavefront in a medium) of ...
Neutrino telescopes consist of hundreds to thousands of optical modules distributed over a large volume. Neutrino astronomy is the branch of astronomy that gathers information about astronomical objects by observing and studying neutrinos emitted by them with the help of neutrino detectors in special Earth observatories. [1]
The neutrino [a] was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum ().In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the observed continuous energy spectra in beta decay, Pauli hypothesized an undetected particle that he called a "neutron", using the same -on ending ...
Neutrino observatories will "give astronomers fresh eyes with which to study the universe". [3] Various detection methods have been used. Super Kamiokande is a large volume of water surrounded by phototubes that watch for the Cherenkov radiation emitted when an incoming neutrino creates an electron or muon in the water.
IMB detected fast-moving particles such as those produced by proton decay or neutrino interactions by picking up the Cherenkov radiation generated when such a particle moves faster than light's speed in water. Since directional information was available from the phototubes, IMB was able to estimate the initial direction of neutrinos.
The more energetic an event is, the larger volume IceCube may detect it in; in this sense, IceCube is more similar to Cherenkov telescopes like the Pierre Auger Observatory (an array of Cherenkov detecting tanks) than it is to other neutrino experiments, such as Super-K (with inward-facing PMTs fixing the fiducial volume).
Cherenkov radiation is not only present in the range of visible light or UV light but also in any frequency range where the emission condition can be met i.e. in the radiofrequency range. Different levels of information can be used. Binary information can be based on the absence or presence of detected Cherenkov radiation.
The water Cherenkov detectors only detect neutrinos above about 5MeV, while the radiochemical experiments were sensitive to lower energy (0.8MeV for chlorine, 0.2MeV for gallium), and this turned out to be the source of the difference in the observed neutrino rates at the two types of experiments.