Search results
Results from the WOW.Com Content Network
Co-based superalloys depend on carbide precipitation and solid solution strengthening for mechanical properties. While these strengthening mechanisms are inferior to gamma prime (γ') precipitation strengthening, [1] cobalt has a higher melting point than nickel and has superior hot corrosion resistance and thermal fatigue. As a result, carbide ...
In these alloys the volume fraction of the γ' precipitates is as high as 80%. [7] Because of this high volume fraction, the evolution of these γ' precipitates during the alloys' life cycles is important: a major concern is the coarsening of these γ' precipitates at high temperature (800 to 1000 °C), which greatly reduces the alloys ...
In age-hardening or precipitation-strengthening varieties, small amounts of niobium combine with nickel to form the intermetallic compound Ni 3 Nb or gamma double prime (γ″). Gamma prime forms small cubic crystals that inhibit slip and creep effectively at elevated temperatures. The formation of gamma-prime crystals increases over time ...
Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and some steels, stainless steels, and duplex stainless steel.
Ostwald ripening is also the key process in the digestion and aging of precipitates, an important step in gravimetric analysis. The digested precipitate is generally purer, and easier to wash and filter. Ostwald ripening can also occur in emulsion systems, with molecules diffusing from small droplets to large ones through the continuous phase.
The gamma (γ) FCC nickel is alloyed with aluminum and titanium in order to precipitate a uniform dispersion of the coherent Ni 3 (Al,Ti) gamma-prime (γ') phases. The finely dispersed γ' precipitates impede dislocation motion and introduce a threshold stress, increasing the stress required for the onset of creep.
The age of Earth is about 4.54 billion years; [7] [33] [34] the earliest undisputed evidence of life on Earth dates from at least 3.5 billion years ago according to the stromatolite record. [35] Some computer models suggest life began as early as 4.5 billion years ago. [36] [37] The oldest evidence of life is indirect in the form of isotopic ...
600 million years: HE 1523-0901, the oldest star found producing neutron capture elements forms, marking a new point in ability to detect stars with a telescope. [9] 630 million years (z=8.2): GRB 090423, the oldest gamma-ray burst recorded suggests that supernovas may have happened very early on in the evolution of the Universe [10]