Search results
Results from the WOW.Com Content Network
What is typically used is y vs. x, such that x is horizontal and y is vertical. However, when specifically talking about plotting a function vs. its input, it is more clear and intuitive to plot f(x) vs. x (or f(y) vs. y or whatever), since the variables x and y are just placeholders. EmergencyBackupChicken 17:00, 7 May 2009 (UTC)
Venn diagram of . In logic, mathematics and linguistics, and is the truth-functional operator of conjunction or logical conjunction.The logical connective of this operator is typically represented as [1] or & or (prefix) or or [2] in which is the most modern and widely used.
Given two sets X and Y, a binary relation f between X and Y is a function (from X to Y) if for every element x in X there is exactly one y in Y such that f relates x to y. The sets X and Y are called the domain and codomain of f, respectively. The image of the function f is the subset of Y consisting of only those elements y of Y such that ...
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
Venn diagram of . Exclusive or, exclusive disjunction, exclusive alternation, logical non-equivalence, or logical inequality is a logical operator whose negation is the logical biconditional.
Likewise, (x, −y) are the coordinates of its reflection across the first coordinate axis (the x-axis). In more generality, reflection across a line through the origin making an angle with the x-axis, is equivalent to replacing every point with coordinates (x, y) by the point with coordinates (x′,y′), where
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or "(∃x)" [1]). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain.