Search results
Results from the WOW.Com Content Network
Graphs of maps, especially those of one variable such as the logistic map, are key to understanding the behavior of the map. One of the uses of graphs is to illustrate fixed points, called points. Draw a line y = x (a 45° line) on the graph of the map. If there is a point where this 45° line intersects with the graph, that point is a fixed point.
add a new (,) pair to the collection, mapping the key to its new value. Any existing mapping is overwritten. The arguments to this operation are the key and the value. Remove or delete remove a (,) pair from the collection, unmapping a given key from its value. The argument to this operation is the key.
Semi-global matching (SGM) is a computer vision algorithm for the estimation of a dense disparity map from a rectified stereo image pair, introduced in 2005 by Heiko Hirschmüller while working at the German Aerospace Center. [1]
Map matching is the problem of how to match recorded geographic coordinates to a logical model of the real world, typically using some form of Geographic Information System. The most common approach is to take recorded, serial location points (e.g. from GPS ) and relate them to edges in an existing street graph (network), usually in a sorted ...
The locks-and-keys approach represents pointers as ordered pairs (key, address) where the key is an integer value. Heap-dynamic variables are represented as the storage for the variable plus a cell for an integer lock value. When a variable is allocated, a lock value is created and placed both into the variable's cell and into the pointer's key ...
Point set registration is the process of aligning two point sets. Here, the blue fish is being registered to the red fish. In computer vision, pattern recognition, and robotics, point-set registration, also known as point-cloud registration or scan matching, is the process of finding a spatial transformation (e.g., scaling, rotation and translation) that aligns two point clouds.
Computing the hash value of a given key x may be performed in constant time by computing g(x), looking up the second-level function associated with g(x), and applying this function to x. A modified version of this two-level scheme with a larger number of values at the top level can be used to construct a perfect hash function that maps S into a ...
The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...