Search results
Results from the WOW.Com Content Network
In geometry, a nonagon (/ ˈ n ɒ n ə ɡ ɒ n /) or enneagon (/ ˈ ɛ n i ə ɡ ɒ n /) is a nine-sided polygon or 9-gon. The name nonagon is a prefix hybrid formation , from Latin ( nonus , "ninth" + gonon ), used equivalently, attested already in the 16th century in French nonogone and in English from the 17th century.
The diagonals divide the polygon into 1, 4, 11, 24, ... pieces. [ a ] For a regular n -gon inscribed in a circle of radius 1 {\displaystyle 1} , the product of the distances from a given vertex to all other vertices (including adjacent vertices and vertices connected by a diagonal) equals n .
A regular triangle, nonagon, and octadecagon can completely surround a point in the plane, one of 17 different combinations of regular polygons with this property. [7] However, this pattern cannot be extended to an Archimedean tiling of the plane: because the triangle and the nonagon both have an odd number of sides, neither of them can be ...
A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.
Every kite is an orthodiagonal quadrilateral, meaning that its two diagonals are at right angles to each other. Moreover, one of the two diagonals (the symmetry axis) is the perpendicular bisector of the other, and is also the angle bisector of the two angles it meets. [1] Because of its symmetry, the other two angles of the kite must be equal.
A centered nonagonal number (or centered enneagonal number) is a centered figurate number that represents a nonagon with a dot in the center and all other dots surrounding the center dot in successive nonagonal layers.
A nonagonal number, or an enneagonal number, is a figurate number that extends the concept of triangular and square numbers to the nonagon (a nine-sided polygon). [1] However, unlike the triangular and square numbers, the patterns involved in the construction of nonagonal numbers are not rotationally symmetrical.
Some diagonals of a concave polygon lie partly or wholly outside the polygon. [4] Some sidelines of a concave polygon fail to divide the plane into two half-planes one of which entirely contains the polygon. None of these three statements holds for a convex polygon.