Search results
Results from the WOW.Com Content Network
The basis behind array programming and thinking is to find and exploit the properties of data where individual elements are similar or adjacent. Unlike object orientation which implicitly breaks down data to its constituent parts (or scalar quantities), array orientation looks to group data and apply a uniform handling.
Python supports most object oriented programming (OOP) techniques. It allows polymorphism, not only within a class hierarchy but also by duck typing. Any object can be used for any type, and it will work so long as it has the proper methods and attributes. And everything in Python is an object, including classes, functions, numbers and modules.
modified_identifier_list «As «non_array_type««array_rank_specifier»» (multiple declarator); valid declaration statements are of the form Dim declarator_list , where, for the purpose of semantic analysis, to convert the declarator_list to a list of only single declarators:
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
In object oriented programming, objects provide a layer which can be used to separate internal from external code and implement abstraction and encapsulation. External code can only use an object by calling a specific instance method with a certain set of input parameters, reading an instance variable, or writing to an instance variable.
The assignment statement (=) binds a name as a reference to a separate, dynamically allocated object. Variables may subsequently be rebound at any time to any object. In Python, a variable name is a generic reference holder without a fixed data type; however, it always refers to some object with a type.
a = [3, 1, 5, 7] // assign an array to the variable a a [0.. 1] // return the first two elements of a a [.. 1] // return the first two elements of a: the zero can be omitted a [2..] // return the element 3 till last one a [[0, 3]] // return the first and the fourth element of a a [[0, 3]] = [100, 200] // replace the first and the fourth element ...
Most strings in modern programming languages are variable-length strings. Of course, even variable-length strings are limited in length – by the size of available computer memory. The string length can be stored as a separate integer (which may put another artificial limit on the length) or implicitly through a termination character, usually ...