enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. PyMC - Wikipedia

    en.wikipedia.org/wiki/PyMC

    Stan is a probabilistic programming language for statistical inference written in C++ ArviZ a Python library for exploratory analysis of Bayesian models Bambi is a high-level Bayesian model-building interface based on PyMC

  3. Template:Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Template:Bayesian_statistics

    Variational inference; Approximate Bayesian computation; Estimators; Bayesian estimator; Credible interval; Maximum a posteriori estimation; Evidence approximation; Evidence lower bound; Nested sampling; Model evaluation; Bayes factor (Schwarz criterion) Model averaging; Posterior predictive; Mathematics portal

  4. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...

  5. Reparameterization trick - Wikipedia

    en.wikipedia.org/wiki/Reparameterization_trick

    The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization.

  6. Bayesian inference - Wikipedia

    en.wikipedia.org/wiki/Bayesian_inference

    Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.

  7. Variational message passing - Wikipedia

    en.wikipedia.org/wiki/Variational_message_passing

    The likelihood estimate needs to be as large as possible; because it's a lower bound, getting closer ⁡ improves the approximation of the log likelihood. By substituting in the factorized version of , (), parameterized over the hidden nodes as above, is simply the negative relative entropy between and plus other terms independent of if is defined as

  8. Variational autoencoder - Wikipedia

    en.wikipedia.org/wiki/Variational_autoencoder

    A variational autoencoder is a generative model with a prior and noise distribution respectively. Usually such models are trained using the expectation-maximization meta-algorithm (e.g. probabilistic PCA , (spike & slab) sparse coding).

  9. Approximate Bayesian computation - Wikipedia

    en.wikipedia.org/wiki/Approximate_Bayesian...

    In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for ...