enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Grandi's_series

    Grandi's series. In mathematics, the infinite series 11 + 11 + ⋯, also written. is sometimes called Grandi's series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703. It is a divergent series, meaning that the sequence of partial sums of the series does not converge.

  3. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...

  4. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    Calculus. In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions: The first terms of the series sum to approximately , where is the natural logarithm and is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it ...

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    List of mathematical series. This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. is a Bernoulli polynomial. is an Euler number. is the Riemann zeta function. is the gamma function. is a polygamma function. is a polylogarithm.

  6. Summation of Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Summation_of_Grandi's_series

    Equivalently, one says that the Cesàro limit of the sequence 1, 0, 1, 0, … is 12. [2] The Cesàro sum of 1 + 0 − 1 + 1 + 0 − 1 + · · · is 23. So the Cesàro sum of a series can be altered by inserting infinitely many 0s as well as infinitely many brackets. [3] The series can also be summed by the more general fractional (C ...

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    t. e. In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.

  8. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    The sum of the members of a finite arithmetic progression is called an arithmetic series. For example, consider the sum: For example, consider the sum: 2 + 5 + 8 + 11 + 14 = 40 {\displaystyle 2+5+8+11+14=40}

  9. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    v. t. e. In mathematics, a geometric series is a series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant. For example, the series is a geometric series with common ratio ⁠ ⁠, which converges to the sum of ⁠ ⁠. Each term in a geometric series is the geometric mean of the term before ...