enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecularity - Wikipedia

    en.wikipedia.org/wiki/Molecularity

    Molecularity, on the other hand, is deduced from the mechanism of an elementary reaction, and is used only in context of an elementary reaction. It is the number of molecules taking part in this reaction. This difference can be illustrated on the reaction between nitric oxide and hydrogen: [11]

  3. Gomberg–Bachmann reaction - Wikipedia

    en.wikipedia.org/wiki/Gomberg–Bachmann_reaction

    For example, p-bromobiphenyl may be prepared from 4-bromoaniline and benzene: [4] BrC 6 H 4 NH 2 + C 6 H 6 → BrC 6 H 4 −C 6 H 5. The reaction offers a wide scope for both diazonium component and arene component but yields are generally low following the original procedure (less than 40%), given the many side-reactions of diazonium salts.

  4. Reaction mechanism - Wikipedia

    en.wikipedia.org/wiki/Reaction_mechanism

    An example of a simple chain reaction is the thermal decomposition of acetaldehyde (CH 3 CHO) to methane (CH 4) and carbon monoxide (CO). The experimental reaction order is 3/2, [4] which can be explained by a Rice-Herzfeld mechanism. [5] This reaction mechanism for acetaldehyde has 4 steps with rate equations for each step :

  5. Elementary reaction - Wikipedia

    en.wikipedia.org/wiki/Elementary_reaction

    In practice, a reaction is assumed to be elementary if no reaction intermediates have been detected or need to be postulated to describe the reaction on a molecular scale. [1] An apparently elementary reaction may be in fact a stepwise reaction, i.e. a complicated sequence of chemical reactions, with reaction intermediates of variable lifetimes.

  6. Murai reaction - Wikipedia

    en.wikipedia.org/wiki/Murai_reaction

    A detailed mechanism for the Murai reaction has not been elucidated. Experimental and computational studies give evidence for at least two different mechanisms, depending on the catalyst . [ 10 ] [ 11 ] For catalysts such as [Ru(H) 2 (CO)(PR 3 ) 3 ] which are active as Ru 0 , a combination of computational density functional studies and ...

  7. Intramolecular reaction - Wikipedia

    en.wikipedia.org/wiki/Intramolecular_reaction

    For the 'small rings' (3- and 4- membered), the slow rates is a consequence of angle strain experienced at the transition state. Although three-membered rings are more strained, formation of aziridine is faster than formation of azetidine due to the proximity of the leaving group and nucleophile in the former, which increases the probability that they would meet in a reactive conformation.

  8. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  9. Darzens reaction - Wikipedia

    en.wikipedia.org/wiki/Darzens_reaction

    Arrow-pushing mechanism for the Darzens reaction. If the starting halide is an α-halo amide, the product is an α,β-epoxy amide. [8] If an α-halo ketone is used, the product is an α,β-epoxy ketone. [2] Any sufficiently strong base can be used for the initial deprotonation.