enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric mean - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean

    Using the geometric mean theorem, triangle PGR's altitude GQ is the geometric mean. For any ratio a:b, AO ≥ GQ. Geometric proof without words that max (a,b) > root mean square (RMS) or quadratic mean (QM) > arithmetic mean (AM) > geometric mean (GM) > harmonic mean (HM) > min (a,b) of two distinct positive numbers a and b [note 1

  3. Geometric mean theorem - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean_theorem

    Another application of this theorem provides a geometrical proof of the AM–GM inequality in the case of two numbers. For the numbers p and q one constructs a half circle with diameter p + q. Now the altitude represents the geometric mean and the radius the arithmetic mean of the two numbers.

  4. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:

  5. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    This estimate is sometimes referred to as the "geometric CV" (GCV), [19] [20] due to its use of the geometric variance. Contrary to the arithmetic standard deviation, the arithmetic coefficient of variation is independent of the arithmetic mean. The parameters μ and σ can be obtained, if the arithmetic mean and the arithmetic variance are known:

  6. Pythagorean means - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_means

    A geometric construction of the quadratic mean and the Pythagorean means (of two numbers a and b). Harmonic mean denoted by H, geometric by G, arithmetic by A and quadratic mean (also known as root mean square) denoted by Q. Comparison of the arithmetic, geometric and harmonic means of a pair of numbers.

  7. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    The inequalities then follow easily by the Pythagorean theorem. Comparison of harmonic, geometric, arithmetic, quadratic and other mean values of two positive real numbers x 1 {\displaystyle x_{1}} and x 2 {\displaystyle x_{2}}

  8. Generalized mean - Wikipedia

    en.wikipedia.org/wiki/Generalized_mean

    The power mean could be generalized further to the generalized f-mean: (, …,) = (= ()) This covers the geometric mean without using a limit with f(x) = log(x). The power mean is obtained for f(x) = x p. Properties of these means are studied in de Carvalho (2016).

  9. Geometric distribution - Wikipedia

    en.wikipedia.org/wiki/Geometric_distribution

    In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions: The probability distribution of the number X {\displaystyle X} of Bernoulli trials needed to get one success, supported on N = { 1 , 2 , 3 , … } {\displaystyle \mathbb {N} =\{1,2,3,\ldots \}} ;