Search results
Results from the WOW.Com Content Network
Natural-language programming (NLP) is an ontology-assisted way of programming in terms of natural-language sentences, e.g. English. [1] A structured document with Content, sections and subsections for explanations of sentences forms a NLP document, which is actually a computer program. Natural language programming is not to be mixed up with ...
The LaTeX source code is attached to the PDF file (see imprint). Licensing Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License , Version 1.2 or any later version published by the Free Software Foundation ; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover ...
The Pile is an 886.03 GB diverse, open-source dataset of English text created as a training dataset for large language models (LLMs). It was constructed by EleutherAI in 2020 and publicly released on December 31 of that year. [1] [2] It is composed of 22 smaller datasets, including 14 new ones. [1]
The methods of neuro-linguistic programming are the specific techniques used to perform and teach neuro-linguistic programming, [1] [2] which teaches that people are only able to directly perceive a small part of the world using their conscious awareness, and that this view of the world is filtered by experience, beliefs, values, assumptions, and biological sensory systems.
NLP makes use of computers, image scanners, microphones, and many types of software programs. Language technology – consists of natural-language processing (NLP) and computational linguistics (CL) on the one hand, and speech technology on the other. It also includes many application oriented aspects of these.
In-context learning, refers to a model's ability to temporarily learn from prompts.For example, a prompt may include a few examples for a model to learn from, such as asking the model to complete "maison → house, chat → cat, chien →" (the expected response being dog), [23] an approach called few-shot learning.
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.
A natural-language search engine would in theory find targeted answers to user questions (as opposed to keyword search). For example, when confronted with a question of the form 'which U.S. state has the highest income tax?', conventional search engines ignore the question and instead search on the keywords 'state', 'income' and 'tax'.