Search results
Results from the WOW.Com Content Network
Even in normally ductile materials, fatigue failures will resemble sudden brittle failures. PSB-induced slip planes result in intrusions and extrusions along the surface of a material, often occurring in pairs. [5] This slip is not a microstructural change within the material, but rather a propagation of dislocations within the material ...
Vibration fatigue is a mechanical engineering term describing material fatigue, caused by forced vibration of random nature. An excited structure responds according to its natural-dynamics modes, which results in a dynamic stress load in the material points. [ 1 ]
Metallurgical failure analysis is the process to determine the mechanism that has caused a metal component to fail.It can identify the cause of failure, providing insight into the root cause and potential solutions to prevent similar failures in the future, as well as culpability, which is important in legal cases. [1]
All the potential causes for a failure mode should be identified and documented. This should be in technical terms. Examples of causes are: Human errors in handling, Manufacturing induced faults, Fatigue, Creep, Abrasive wear, erroneous algorithms, excessive voltage or improper operating conditions or use (depending on the used ground rules).
Low cycle fatigue (LCF) has two fundamental characteristics: plastic deformation in each cycle; and low cycle phenomenon, in which the materials have finite endurance for this type of load. The term cycle refers to repeated applications of stress that lead to eventual fatigue and failure; low-cycle pertains to a long period between applications.
Fatigue alone is the driving cause of failure in this case, causing the material to fail before oxidation can have much of an effect. [1] TMF still is not fully understood. There are many different models to attempt to predict the behavior and life of materials undergoing TMF loading. The two models presented below take different approaches.
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]
Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure or ductile failure .