Search results
Results from the WOW.Com Content Network
A scale factor of 1 is normally allowed, so that congruent shapes are also classed as similar. Uniform scaling happens, for example, when enlarging or reducing a photograph, or when creating a scale model of a building, car, airplane, etc. More general is scaling with a separate scale factor for each axis direction.
Examples include a 3-dimensional scale model of a building or the scale drawings of the elevations or plans of a building. [1] In such cases the scale is dimensionless and exact throughout the model or drawing. The scale can be expressed in four ways: in words (a lexical scale), as a ratio, as a fraction and as a graphical (bar) scale.
Scale analysis rules as follows: Rule1-First step in scale analysis is to define the domain of extent in which we apply scale analysis. Any scale analysis of a flow region that is not uniquely defined is not valid. Rule2-One equation constitutes an equivalence between the scales of two dominant terms appearing in the equation. For example,
Scale invariance, a feature of objects or laws that do not change if scales of length, energy, or other variables are multiplied by a common factor Scaling law, a law that describes the scale invariance found in many natural phenomena; The scaling of critical exponents in physics, such as Widom scaling, or scaling of the renormalization group
Scale invariance is an exact form of self-similarity where at any magnification there is a smaller piece of the object that is similar to the whole. For instance, a side of the Koch snowflake is both symmetrical and scale-invariant; it can be continually magnified 3x without changing shape. The non-trivial similarity evident in fractals is ...
The examples discussed here were chosen for clarity, and the scaling unit and ratios were known ahead of time. In practice, however, fractal dimensions can be determined using techniques that approximate scaling and detail from limits estimated from regression lines over log–log plots of size vs scale. Several formal mathematical definitions ...
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.
Unlike a linear scale where each unit of distance corresponds to the same increment, on a logarithmic scale each unit of length is a multiple of some base value raised to a power, and corresponds to the multiplication of the previous value in the scale by the base value. In common use, logarithmic scales are in base 10 (unless otherwise specified).