enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    Magnets exert forces and torques on each other through the interaction of their magnetic fields.The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the mater

  3. Magnetorotational instability - Wikipedia

    en.wikipedia.org/wiki/Magnetorotational_instability

    In a magnetized, perfectly conducting fluid, the magnetic forces behave in some very important respects as though the elements of fluid were connected with elastic bands: trying to displace such an element perpendicular to a magnetic line of force causes an attractive force proportional to the displacement, like a spring under tension. Normally ...

  4. Fundamental interaction - Wikipedia

    en.wikipedia.org/wiki/Fundamental_interaction

    The electromagnetic force, carried by the photon, creates electric and magnetic fields, which are responsible for the attraction between orbital electrons and atomic nuclei which holds atoms together, as well as chemical bonding and electromagnetic waves, including visible light, and forms the basis for electrical technology. Although the ...

  5. Electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Electromagnetism

    Electromagnetic forces occur between any two charged particles. Electric forces cause an attraction between particles with opposite charges and repulsion between particles with the same charge, while magnetism is an interaction that occurs between charged particles in relative motion. These two forces are described in terms of electromagnetic ...

  6. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    Additional magnetic field values can be found through the magnetic field of a finite beam, for example, that the magnetic field of an arc of angle and radius at the center is =, or that the magnetic field at the center of a N-sided regular polygon of side is = ⁡ ⁡, both outside of the plane with proper directions as inferred by right hand ...

  7. Magnet - Wikipedia

    en.wikipedia.org/wiki/Magnet

    A magnet's magnetic moment (also called magnetic dipole moment and usually denoted μ) is a vector that characterizes the magnet's overall magnetic properties. For a bar magnet, the direction of the magnetic moment points from the magnet's south pole to its north pole, [ 15 ] and the magnitude relates to how strong and how far apart these poles ...

  8. Ferromagnetism - Wikipedia

    en.wikipedia.org/wiki/Ferromagnetism

    An example of a permanent magnet formed from a ferromagnetic material is a refrigerator magnet. [2] Substances respond weakly to three other types of magnetism—paramagnetism, diamagnetism, and antiferromagnetism—but the forces are usually so weak that they can be detected only by lab instruments.

  9. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    The magnetic field (B, green arrow) of the magnet's North pole N is directed down in the −y direction. The magnetic field exerts a Lorentz force on the electron (pink arrow) of F 1 = −e(v × B), where e is the electron's charge. Since the electron has a negative charge, from the right hand rule this is directed in the +z direction.