enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    This equation uses the overall heat transfer coefficient of an unfouled heat exchanger and the fouling resistance to calculate the overall heat transfer coefficient of a fouled heat exchanger. The equation takes into account that the perimeter of the heat exchanger is different on the hot and cold sides.

  3. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    Here, is the overall heat transfer coefficient, is the total heat transfer area, and is the minimum heat capacity rate. To better understand where this definition of NTU comes from, consider the following heat transfer energy balance, which is an extension of the energy balance above:

  4. Logarithmic mean temperature difference - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_mean...

    Q is the exchanged heat duty , U is the heat transfer coefficient (watts per kelvin per square meter), A is the exchange area. Note that estimating the heat transfer coefficient may be quite complicated. This holds both for cocurrent flow, where the streams enter from the same end, and for countercurrent flow, where they enter from different ends.

  5. Heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Heat_exchanger

    Online monitoring of commercial heat exchangers is done by tracking the overall heat transfer coefficient. The overall heat transfer coefficient tends to decline over time due to fouling. By periodically calculating the overall heat transfer coefficient from exchanger flow rates and temperatures, the owner of the heat exchanger can estimate ...

  6. Plate heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Plate_heat_exchanger

    The total rate of heat transfer between the hot and cold fluids passing through a plate heat exchanger may be expressed as: Q = UA∆Tm where U is the Overall heat transfer coefficient, A is the total plate area, and ∆Tm is the Log mean temperature difference. U is dependent upon the heat transfer coefficients in the hot and cold streams. [2]

  7. Rising film evaporator - Wikipedia

    en.wikipedia.org/wiki/Rising_film_evaporator

    Q is the heat transfer Rate U is the overall heat transfer coefficient A is the overall heat transfer area T lm is the temperature difference or log mean temperature difference. For a general shell and tube heat exchanger, U is given by the equation [3]

  8. Nusselt number - Wikipedia

    en.wikipedia.org/wiki/Nusselt_number

    The heat transfer rate can be written using Newton's law of cooling as = (), where h is the heat transfer coefficient and A is the heat transfer surface area. Because heat transfer at the surface is by conduction, the same quantity can be expressed in terms of the thermal conductivity k:

  9. Cooling load temperature difference calculation method

    en.wikipedia.org/wiki/Cooling_load_temperature...

    The equations for the use of the data retrieved from these tables are very simple. Q= heat gain, usually heat gain per unit time A= surface area. U= Overall heat transfer coefficient. CLTD= cooling load temperature difference SCL= solar cooling load factor CLF= cooling load factor SC= shading coefficient