Search results
Results from the WOW.Com Content Network
In statistics, the concept of the shape of a probability distribution arises in questions of finding an appropriate distribution to use to model the statistical properties of a population, given a sample from that population. The shape of a distribution may be considered either descriptively, using terms such as "J-shaped", or numerically ...
A chain graph is a graph which may have both directed and undirected edges, but without any directed cycles (i.e. if we start at any vertex and move along the graph respecting the directions of any arrows, we cannot return to the vertex we started from if we have passed an arrow). Both directed acyclic graphs and undirected graphs are special ...
Figure 1: The left graph shows a probability density function. The right graph shows the cumulative distribution function. The value at a in the cumulative distribution equals the area under the probability density curve up to the point a. Absolutely continuous probability distributions can be described in several ways.
In it, geometrical shapes can be made, as well as expressions from the normal graphing calculator, with extra features. [8] In September 2023, Desmos released a beta for a 3D calculator, which added features on top of the 2D calculator, including cross products, partial derivatives and double-variable parametric equations.
Statistical graphics have been central to the development of science and date to the earliest attempts to analyse data. Many familiar forms, including bivariate plots, statistical maps, bar charts, and coordinate paper were used in the 18th century.
In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables.
Probability plots for distributions other than the normal are computed in exactly the same way. The normal quantile function Φ −1 is simply replaced by the quantile function of the desired distribution. In this way, a probability plot can easily be generated for any distribution for which one has the quantile function.
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".