Search results
Results from the WOW.Com Content Network
One of the observable characteristics of two bodies which orbit a third body in different orbits, and thus have different orbital periods, is their synodic period, which is the time between conjunctions. An example of this related period description is the repeated cycles for celestial bodies as observed from the Earth's surface, the synodic ...
In orbital mechanics, mean motion (represented by n) is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. [1]
where M 0 is the mean anomaly at the epoch t 0, which may or may not coincide with τ, the time of pericenter passage. The classical method of finding the position of an object in an elliptical orbit from a set of orbital elements is to calculate the mean anomaly by this equation, and then to solve Kepler's equation for the eccentric anomaly.
Assume the following values for an Earth centered Kepler orbit r 1 = 10000 km; r 2 = 16000 km; α = 100° These are the numerical values that correspond to figures 1, 2, and 3. Selecting the parameter y as 30000 km one gets a transfer time of 3072 seconds assuming the gravitational constant to be = 398603 km 3 /s 2. Corresponding orbital ...
The orbit of a planet is an ellipse with the Sun at one of the two foci. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
Using, for example, the "mean anomaly" instead of "mean anomaly at epoch" means that the epoch time t must be specified as a seventh orbital element. Alternatively the "time of periapsis passage", T 0, can be specified in place of the typical epoch time. This removes the need to specify the mean anomaly at epoch, as it is assumed to be zero.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...