Search results
Results from the WOW.Com Content Network
In IEEE 754 parlance, there are 10 bits of significand, but there are 11 bits of significand precision (log 10 (2 11) ≈ 3.311 decimal digits, or 4 digits ± slightly less than 5 units in the last place).
The otherwise binary Wang VS machine supported a 64-bit decimal floating-point format in 1977. [2] The Motorola 68881 supported a format with 17 digits of mantissa and 3 of exponent in 1984, with the floating-point support library for the Motorola 68040 processor providing a compatible 96-bit decimal floating-point storage format in 1990. [2]
The 8 decimal values whose digits are all 8s or 9s have four codings each. The bits marked x in the table above are ignored on input, but will always be 0 in computed results. (The 8 × 3 = 24 non-standard encodings fill in the gap between 10 3 = 1000 and 2 10 = 1024.)
Here the 'IEEE 754 double value' resulting of the 15 bit figure is 3.330560653658221E-15, which is rounded by Excel for the 'user interface' to 15 digits 3.33056065365822E-15, and then displayed with 30 decimals digits gets one 'fake zero' added, thus the 'binary' and 'decimal' values in the sample are identical only in display, the values ...
Whether or not a rational number has a terminating expansion depends on the base. For example, in base-10 the number 1/2 has a terminating expansion (0.5) while the number 1/3 does not (0.333...). In base-2 only rationals with denominators that are powers of 2 (such as 1/2 or 3/16) are terminating.
[3] [4] The word mantissa was introduced by Henry Briggs. [5] For a positive number written in a conventional positional numeral system (such as binary or decimal), its fractional part hence corresponds to the digits appearing after the radix point, such as the decimal point in English. The result is a real number in the half-open interval [0, 1
0 11111110 11111111111111111111111 2 = 7f7f ffff 16 = 2 127 × (2 − 2 −23) ≈ 3.4028234664 × 10 38 (largest normal number) 0 01111110 11111111111111111111111 2 = 3f7f ffff 16 = 1 − 2 −24 ≈ 0.999999940395355225 (largest number less than one) 0 01111111 00000000000000000000000 2 = 3f80 0000 16 = 1 (one)
A more efficient encoding can be designed using the fact that the exponent range is of the form 3×2 k, so the exponent never starts with 11. Using the Decimal32 encoding (with a significand of 3*2+1 decimal digits) as an example (e stands for exponent, m for mantissa, i.e. significand):