Search results
Results from the WOW.Com Content Network
Nanoparticles are distinguished from microparticles (1-1000 μm), "fine particles" (sized between 100 and 2500 nm), and "coarse particles" (ranging from 2500 to 10,000 nm), because their smaller size drives very different physical or chemical properties, like colloidal properties and ultrafast optical effects [3] or electric properties.
Applications of nanofabrics have the potential to revolutionize textile manufacturing [6] and areas of medicine such as drug delivery and tissue engineering. [7] Electron microscope image of cotton fibers coated with gold (left) and palladium (right) nanoparticles. The nanoparticles make up just the outline of the fibers in these two images. [8]
Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Silica nanoparticles, in particular, are inert from a photophysical perspective and can accumulate a large number of dye(s) within their shells. [42]
Inorganic nanoparticles have been largely adopted to biological and medical applications ranging from imaging and diagnoses to drug delivery. [22] Inorganic nanoparticles are usually composed of inert metals such as gold and titanium that form nanospheres, however, iron oxide nanoparticles have also become an option.
Attachments on nanoparticles make them more biocompatible. A nanoparticle–biomolecule conjugate is a nanoparticle with biomolecules attached to its surface. Nanoparticles are minuscule particles, typically measured in nanometers (nm), that are used in nanobiotechnology to explore the functions of biomolecules. Properties of the ultrafine ...
Nanotechnology has been making headlines in the medical field, [91] being responsible for biomedical imaging. The unique optical, magnetic and chemical properties of materials on the Nano scale has allowed the development of imaging probes with multi-functionality such as better contrast enhancement, better spatial information, controlled bio ...
Protein nanotechnology is a burgeoning field of research that integrates the diverse physicochemical properties of proteins with nanoscale technology. This field assimilated into pharmaceutical research to give rise to a new classification of nanoparticles termed protein (or protein-based) nanoparticles (PNPs).
Gold nanoparticles (such as AuNPs) have the benefit of being biocompatible and the flexibility to have multiple different molecules, and fundamental materials, attached to their shell (almost anything that can normally be attached to gold can be attached to the gold nano-shell, which can be used in helping identifying and treating cancer).