Search results
Results from the WOW.Com Content Network
Fluid Phase Equilibria is a peer-reviewed scientific journal on physical chemistry and thermodynamics that is published by Elsevier.The articles deal with experimental, theoretical and applied research related to properties of pure components and mixtures, especially phase equilibria, caloric and transport properties of fluid and solid phases.
VTPR (short for Volume-Translated Peng–Robinson) [1] [2] is an estimation method for the calculation of phase equilibria of mixtures of chemical components. The original goal for the development of this method was to enable the estimation of properties of mixtures which contain supercritical components.
In statistical thermodynamics, UNIQUAC (a portmanteau of universal quasichemical) is an activity coefficient model used in description of phase equilibria. [ 1 ] [ 2 ] The model is a so-called lattice model and has been derived from a first order approximation of interacting molecule surfaces.
VLE of the mixture of chloroform and methanol plus NRTL fit and extrapolation to different pressures. The non-random two-liquid model [1] (abbreviated NRTL model) is an activity coefficient model introduced by Renon and Prausnitz in 1968 that correlates the activity coefficients of a compound with its mole fractions in the liquid phase concerned.
Statistical associating fluid theory (SAFT) [1] [2] is a chemical theory, based on perturbation theory, that uses statistical thermodynamics to explain how complex fluids and fluid mixtures form associations through hydrogen bonds. [3] Widely used in industry and academia, it has become a standard approach for describing complex mixtures.
By adding a correction factor, known as the activity (, the activity of the i th component) to the liquid phase fraction of a liquid mixture, some of the effects of the real solution can be accounted for. The activity of a real chemical is a function of the thermodynamic state of the system, i.e. temperature and pressure.
PSRK (short for Predictive Soave–Redlich–Kwong) [1] is an estimation method for the calculation of phase equilibria of mixtures of chemical components. The original goal for the development of this method was to enable the estimation of properties of mixtures containing supercritical components.
Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.