enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    As an example one may consider random variables with densities f n (x) = (1 + cos(2πnx))1 (0,1). These random variables converge in distribution to a uniform U(0, 1), whereas their densities do not converge at all. [3] However, according to Scheffé’s theorem, convergence of the probability density functions implies convergence in ...

  3. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    Each of the probabilities on the right-hand side converge to zero as n → ∞ by definition of the convergence of {X n} and {Y n} in probability to X and Y respectively. Taking the limit we conclude that the left-hand side also converges to zero, and therefore the sequence {(X n, Y n)} converges in probability to {(X, Y)}.

  4. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    The staggered geometric progression () =,,,,, …, / ⌊ ⌋, …, using the floor function ⌊ ⌋ that gives the largest integer that is less than or equal to , converges R-linearly to 0 with rate 1/2, but it does not converge Q-linearly; see the second plot of the figure below. The defining Q-linear convergence limits do not exist for this ...

  5. Slutsky's theorem - Wikipedia

    en.wikipedia.org/wiki/Slutsky's_theorem

    In probability theory, Slutsky's theorem extends some properties of algebraic operations on convergent sequences of real numbers to sequences of random variables. [1] The theorem was named after Eugen Slutsky. [2] Slutsky's theorem is also attributed to Harald Cramér. [3]

  6. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity. There are many types of sequences and modes of convergence , and different proof techniques may be more appropriate than others for proving each type of convergence of each type ...

  7. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    Absolute convergence implies Cauchy convergence of the sequence of partial sums (by the triangle inequality), which in turn implies absolute convergence of some grouping (not reordering). The sequence of partial sums obtained by grouping is a subsequence of the partial sums of the original series.

  8. Big O in probability notation - Wikipedia

    en.wikipedia.org/wiki/Big_O_in_probability_notation

    The order in probability notation is used in probability theory and statistical theory in direct parallel to the big O notation that is standard in mathematics.Where the big O notation deals with the convergence of sequences or sets of ordinary numbers, the order in probability notation deals with convergence of sets of random variables, where convergence is in the sense of convergence in ...

  9. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    Cauchy's convergence test can only be used in complete metric spaces (such as and ), which are spaces where all Cauchy sequences converge. This is because we need only show that its elements become arbitrarily close to each other after a finite progression in the sequence to prove the series converges.