Search results
Results from the WOW.Com Content Network
Depending on the type of singularity in the integrand f, the Cauchy principal value is defined according to the following rules: . For a singularity at a finite number b + [() + + ()] with < < and where b is the difficult point, at which the behavior of the function f is such that = for any < and = for any >.
In mathematical analysis, an improper integral is an extension of the notion of a definite integral to cases that violate the usual assumptions for that kind of integral. [1] In the context of Riemann integrals (or, equivalently, Darboux integrals ), this typically involves unboundedness, either of the set over which the integral is taken or of ...
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
But if the integral diverges, then the series does so as well. In other words, the series a n {\displaystyle {a_{n}}} converges if and only if the integral converges. p -series test
In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .
An analogous statement for convergence of improper integrals is proven using integration by parts. If the integral of a function f is uniformly bounded over all intervals , and g is a non-negative monotonically decreasing function , then the integral of fg is a convergent improper integral.
The path C is the concatenation of the paths C 1 and C 2.. Jordan's lemma yields a simple way to calculate the integral along the real axis of functions f(z) = e i a z g(z) holomorphic on the upper half-plane and continuous on the closed upper half-plane, except possibly at a finite number of non-real points z 1, z 2, …, z n.
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]