enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    Absolutely continuous functions are continuous: consider the case n = 1 in this definition. The collection of all absolutely continuous functions on I is denoted AC(I). Absolute continuity is a fundamental concept in the Lebesgue theory of integration, allowing the formulation of a generalized version of the fundamental theorem of calculus that ...

  3. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (−r) = f (r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. The theorem applies even when the function cannot be differentiated ...

  4. Gateaux derivative - Wikipedia

    en.wikipedia.org/wiki/Gateaux_derivative

    This is analogous to the result from basic complex analysis that a function is analytic if it is complex differentiable in an open set, and is a fundamental result in the study of infinite dimensional holomorphy. Continuous differentiability. Continuous Gateaux differentiability may be defined in two inequivalent ways.

  5. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    An everywhere differentiable function g : R → R is Lipschitz continuous (with K = sup |g′(x)|) if and only if it has a bounded first derivative; one direction follows from the mean value theorem. In particular, any continuously differentiable function is locally Lipschitz, as continuous functions are locally bounded so its gradient is ...

  6. Arzelà–Ascoli theorem - Wikipedia

    en.wikipedia.org/wiki/Arzelà–Ascoli_theorem

    The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence.

  7. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    By Darboux's theorem, the derivative of any differentiable function is a Darboux function. In particular, the derivative of the function ⁡ (/) is a Darboux function even though it is not continuous at one point. An example of a Darboux function that is nowhere continuous is the Conway base 13 function.

  8. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    is everywhere continuous. However, it is not differentiable at = (but is so everywhere else). Weierstrass's function is also everywhere continuous but nowhere differentiable. The derivative f′(x) of a differentiable function f(x) need not be continuous. If f′(x) is continuous, f(x) is said to be continuously differentiable.

  9. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    (a different Weierstrass Function which is also continuous and nowhere differentiable) Nowhere differentiable continuous function proof of existence using Banach's contraction principle. Nowhere monotonic continuous function proof of existence using the Baire category theorem. Johan Thim. "Continuous Nowhere Differentiable Functions".