Search results
Results from the WOW.Com Content Network
A visual depiction of a Poisson point process starting. In probability theory, statistics and related fields, a Poisson point process (also known as: Poisson random measure, Poisson random point field and Poisson point field) is a type of mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...
A Poisson (counting) process on the line can be characterised by two properties : the number of points (or events) in disjoint intervals are independent and have a Poisson distribution. A Poisson point process can also be defined using these two properties. Namely, we say that a point process is a Poisson point process if the following two ...
Realization of Boolean model with random-radii discs. For statistics in probability theory, the Boolean-Poisson model or simply Boolean model for a random subset of the plane (or higher dimensions, analogously) is one of the simplest and most tractable models in stochastic geometry.
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
The fact that the spherical distribution function H s (r) and nearest neighbor function D o (r) are identical for the Poisson point process can be used to statistically test if point process data appears to be that of a Poisson point process. For example, in spatial statistics the J-function is defined for all r ≥ 0 as: [4] = () For a Poisson ...
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution , and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters .
In probability theory and statistics, Campbell's theorem or the Campbell–Hardy theorem is either a particular equation or set of results relating to the expectation of a function summed over a point process to an integral involving the mean measure of the point process, which allows for the calculation of expected value and variance of the random sum.
Point process operations and the resulting point processes are used in the theory of point processes and related fields such as stochastic geometry and spatial statistics. [1] One point process that gives particularly convenient results under random point process operations is the Poisson point process, [2] The Poisson point process often ...