Search results
Results from the WOW.Com Content Network
Knowledge acquisition is the process used to define the rules and ontologies required for a knowledge-based system. The phrase was first used in conjunction with expert systems to describe the initial tasks associated with developing an expert system, namely finding and interviewing domain experts and capturing their knowledge via rules ...
Many of the early approaches to knowledge represention in Artificial Intelligence (AI) used graph representations and semantic networks, similar to knowledge graphs today. In such approaches, problem solving was a form of graph traversal [2] or path-finding, as in the A* search algorithm. Typical applications included robot plan-formation and ...
Each knowledge source updates the blackboard with a partial solution when its internal constraints match the blackboard state. In this way, the specialists work together to solve the problem. The blackboard model was originally designed as a way to handle complex, ill-defined problems, where the solution is the sum of its parts.
In artificial intelligence (AI), an expert system is a computer system emulating the decision-making ability of a human expert. [1] Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if–then rules rather than through conventional procedural programming code. [2]
Reason maintenance [1] [2] is a knowledge representation approach to efficient handling of inferred information that is explicitly stored. Reason maintenance distinguishes between base facts, which can be defeated, and derived facts.
In the field of artificial intelligence, an inference engine is a software component of an intelligent system that applies logical rules to the knowledge base to deduce new information. The first inference engines were components of expert systems. The typical expert system consisted of a knowledge base and an inference engine.
In the context of knowledge management, the closed-world assumption is used in at least two situations: (1) when the knowledge base is known to be complete (e.g., a corporate database containing records for every employee), and (2) when the knowledge base is known to be incomplete but a "best" definite answer must be derived from incomplete information.
A cognitive model is a representation of one or more cognitive processes in humans or other animals for the purposes of comprehension and prediction. There are many types of cognitive models, and they can range from box-and-arrow diagrams to a set of equations to software programs that interact with the same tools that humans use to complete tasks (e.g., computer mouse and keyboard).