Search results
Results from the WOW.Com Content Network
In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =
The final expression is defined for all complex numbers except the negative even integers and satisfies (z + 2)!! = (z + 2) · z!! everywhere it is defined. As with the gamma function that extends the ordinary factorial function, this double factorial function is logarithmically convex in the sense of the Bohr–Mollerup theorem.
The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.
In mathematics, the gamma function (represented by Γ, capital Greek letter gamma) is the most common extension of the factorial function to complex numbers.Derived by Daniel Bernoulli, the gamma function () is defined for all complex numbers except non-positive integers, and for every positive integer =, () = ()!.
Comparison of Stirling's approximation with the factorial. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of .
Common notations are prefix notation (e.g. ¬, −), postfix notation (e.g. factorial n!), functional notation (e.g. sin x or sin(x)), and superscripts (e.g. transpose A T). Other notations exist as well, for example, in the case of the square root, a horizontal bar extending the square root sign over the argument can indicate the extent of the ...
This experiment is an example of a 2 2 (or 2×2) factorial experiment, so named because it considers two levels (the base) for each of two factors (the power or superscript), or #levels #factors, producing 2 2 =4 factorial points. Cube plot for factorial design . Designs can involve many independent variables.
The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).