Search results
Results from the WOW.Com Content Network
A fossorial animal (from Latin fossor 'digger') is one that is adapted to digging and which lives primarily (but not solely) underground. Examples of fossorial vertebrates are badgers , naked mole-rats , meerkats , armadillos , wombats , and mole salamanders . [ 1 ]
Main-sequence stars vary in surface temperature from approximately 2,000 to 50,000 K, whereas more-evolved stars – in particular, newly-formed white dwarfs – can have surface temperatures above 100,000 K. [3] Physically, the classes indicate the temperature of the star's atmosphere and are normally listed from hottest to coldest.
Closest star to the Sun with exactly six [29] exoplanets, and closest K-type main sequence star to the Sun with a multiplanetary system. One of the oldest stars with a multiplanetary system, although it is still more metal-rich than the Sun. None of the known planets is in the habitable zone. [30] 61 Virginis: Virgo: 13 h 18 m 24.31 s: −18 ...
Each star follows an evolutionary track across this diagram. If this track takes the star through a region containing an intrinsic variable type, then its physical properties can cause it to become a variable star. An example of this is the instability strip, a region of the H-R diagram that includes Delta Scuti, RR Lyrae and Cepheid variables. [7]
Below there are lists the nearest stars separated by spectral type. The scope of the list is still restricted to the main sequence spectral types: M , K , F , G , A , B and O . It may be later expanded to other types, such as S , D or C .
A multiple star system consists of two or more stars that appear from Earth to be close to one another in the sky. [dubious – discuss] This may result from the stars actually being physically close and gravitationally bound to each other, in which case it is a physical multiple star, or this closeness may be merely apparent, in which case it is an optical multiple star [a] Physical multiple ...
Representative lifetimes of stars as a function of their masses The change in size with time of a Sun-like star Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the subgiant and giant phases, until its outer envelope is expelled to form a planetary nebula at upper right Chart of stellar evolution
Capable of harboring terrestrial planets; Support a dynamically stable habitable zone; 0–1 non-wide stellar companion stars. The requirement that the star remain on the main sequence for at least 0.5–1 Ga sets an upper limit of approximately 2.2–3.4 solar masses, corresponding to a hottest spectral type of A0-B7V.