Search results
Results from the WOW.Com Content Network
Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.
The following 23 pages use this file: Amphibolic; Citric acid cycle; List of German inventions and discoveries; Oxidative decarboxylation; Pyruvate dehydrogenase deficiency; Talk:Citric acid cycle/Archive 1; Talk:Main Page/Archive 204; User:Laurenferruccio/sandbox; User:Sabreen & Tatyana/sandbox; User:Tony Mach/inborn; User talk:Narayanese ...
The reverse Krebs cycle, also known as the reverse TCA cycle (rTCA) or reductive citric acid cycle, is an alternative to the standard Calvin-Benson cycle for carbon fixation. It has been found in strict anaerobic or microaerobic bacteria (as Aquificales ) and anaerobic archea .
Fatty acid degradation is the process in which fatty acids are broken down into their metabolites, in the end generating acetyl-CoA, the entry molecule for the citric acid cycle, the main energy supply of living organisms, including bacteria and animals. [1] [2] It includes three major steps: Lipolysis of and release from adipose tissue
In normal function of this cycle for respiration, concentrations of TCA intermediates remain constant; however, many biosynthetic reactions also use these molecules as a substrate. Anaplerosis is the act of replenishing TCA cycle intermediates that have been extracted for biosynthesis (in what are called anaplerotic reactions).
Diagram Enzyme End product Dehydrogenation by FAD: The first step is the oxidation of the fatty acid by Acyl-CoA-Dehydrogenase. The enzyme catalyzes the formation of a trans-double bond between the C-2 and C-3 by selectively remove hydrogen atoms from the β-carbon. The regioselectivity of this step is essential for the subsequent hydration and ...
Common name IUPAC name Molecular formula Structural formula citric acid: 2-hydroxypropane-1,2,3-tricarboxylic acid: C 6 H 8 O 7: isocitric acid: 1-hydroxypropane-1,2,3-tricarboxylic acid
[5]: 572 To the right is an illustration of the amphibolic properties of the TCA cycle. The glyoxylate shunt pathway is an alternative to the tricarboxylic acid (TCA) cycle, for it redirects the pathway of TCA to prevent full oxidation of carbon compounds, and to preserve high energy carbon sources as future energy sources. This pathway occurs ...