Search results
Results from the WOW.Com Content Network
In time series analysis (or forecasting) — as conducted in statistics, signal processing, and many other fields — the innovation is the difference between the observed value of a variable at time t and the optimal forecast of that value based on information available prior to time t.
The noise components are filtered out, but not quite completely; the signal components are retained, but not quite completely; and there is a transition zone which is partly accepted. In contrast, the signal subspace approach represents a sharp cut-off: an orthogonal component either lies within the signal subspace, in which case it is 100% ...
Identifying the dominant noise type in a time series has many applications including clock stability analysis and market forecasting. There are two algorithms based on autocorrelation functions that can identify the dominant noise type in a data set provided the noise type has a power law spectral density.
In order to define the notion of white noise in the theory of continuous-time signals, one must replace the concept of a random vector by a continuous-time random signal; that is, a random process that generates a function of a real-valued parameter .
First, white noise is a generalized stochastic process with independent values at each time. [12] Hence it plays the role of a generalized system of independent coordinates, in the sense that in various contexts it has been fruitful to express more general processes occurring e.g. in engineering or mathematical finance, in terms of white noise.
Hence the theory is often called the Wiener–Kolmogorov filtering theory (cf. Kriging). The Wiener filter was the first statistically designed filter to be proposed and subsequently gave rise to many others including the Kalman filter .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics: Additive because it is added to any noise that might be intrinsic to the information system.