enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Innovation (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Innovation_(signal_processing)

    In time series analysis (or forecasting) — as conducted in statistics, signal processing, and many other fields — the innovation is the difference between the observed value of a variable at time t and the optimal forecast of that value based on information available prior to time t.

  3. Noisy data - Wikipedia

    en.wikipedia.org/wiki/Noisy_data

    Random noise is often a large component of the noise in data. [3] Random noise in a signal is measured as the signal-to-noise ratio. Random noise contains almost equal amounts of a wide range of frequencies, and is also called white noise (as colors of light combine to make white). Random noise is an unavoidable problem. It affects the data ...

  4. Colors of noise - Wikipedia

    en.wikipedia.org/wiki/Colors_of_noise

    Identifying the dominant noise type in a time series has many applications including clock stability analysis and market forecasting. There are two algorithms based on autocorrelation functions that can identify the dominant noise type in a data set provided the noise type has a power law spectral density.

  5. Approximate entropy - Wikipedia

    en.wikipedia.org/wiki/Approximate_entropy

    Lower computational demand. ApEn can be designed to work for small data samples (< points) and can be applied in real time. Less effect from noise. If data is noisy, the ApEn measure can be compared to the noise level in the data to determine what quality of true information may be present in the data.

  6. Additive white Gaussian noise - Wikipedia

    en.wikipedia.org/wiki/Additive_white_Gaussian_noise

    The instantaneous response of the noise vector cannot be precisely predicted, however, its time-averaged response can be statistically predicted. As shown in the graph, we confidently predict that the noise phasor will reside about 38% of the time inside the 1 σ circle, about 86% of the time inside the 2 σ circle, and about 98% of the time ...

  7. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values. Generally, time series data is modelled as a stochastic process.

  8. Step detection - Wikipedia

    en.wikipedia.org/wiki/Step_detection

    By considering a small "window" of the signal, these algorithms look for evidence of a step occurring within the window. The window "slides" across the time series, one time step at a time. The evidence for a step is tested by statistical procedures, for example, by use of the two-sample Student's t-test.

  9. STAR model - Wikipedia

    en.wikipedia.org/wiki/STAR_model

    Given a time series of data x t, the STAR model is a tool for understanding and, perhaps, predicting future values in this series, assuming that the behaviour of the series changes depending on the value of the transition variable. The transition might depend on the past values of the x series (similar to the SETAR models), or exogenous variables.