Search results
Results from the WOW.Com Content Network
In time series analysis (or forecasting) — as conducted in statistics, signal processing, and many other fields — the innovation is the difference between the observed value of a variable at time t and the optimal forecast of that value based on information available prior to time t. If the forecasting method is working correctly ...
Signal subspace noise-reduction can be compared to Wiener filter methods. There are two main differences: There are two main differences: The basis signals used in Wiener filtering are usually harmonic sine waves , into which a signal can be decomposed by Fourier transform .
Singular spectrum analysis applied to a time-series F, with reconstructed components grouped into trend, oscillations, and noise. In time series analysis, singular spectrum analysis (SSA) is a nonparametric spectral estimation method.
After these subspaces are identified, a frequency estimation function is used to find the component frequencies from the noise subspace. The most popular methods of noise subspace based frequency estimation are Pisarenko's method, the multiple signal classification (MUSIC) method, the eigenvector method, and the minimum norm method. Pisarenko's ...
Identifying the dominant noise type in a time series has many applications including clock stability analysis and market forecasting. There are two algorithms based on autocorrelation functions that can identify the dominant noise type in a data set provided the noise type has a power law spectral density.
It is usually considered as a special case of the statistical method known as change detection or change point detection. Often, the step is small and the time series is corrupted by some kind of noise, and this makes the problem challenging because the step may be hidden by the noise. Therefore, statistical and/or signal processing algorithms ...
Signal averaging is a signal processing technique applied in the time domain, intended to increase the strength of a signal relative to noise that is obscuring it. By averaging a set of replicate measurements, the signal-to-noise ratio (SNR) will be increased, ideally in proportion to the square root of the number of measurements.
Time-series segmentation is a method of time-series analysis in which an input time-series is divided into a sequence of discrete segments in order to reveal the underlying properties of its source. A typical application of time-series segmentation is in speaker diarization , in which an audio signal is partitioned into several pieces according ...