enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ultrasound energy - Wikipedia

    en.wikipedia.org/wiki/Ultrasound_energy

    Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz.

  3. Sound amplification by stimulated emission of radiation

    en.wikipedia.org/wiki/Sound_amplification_by...

    In the 21st century, it is easy to produce low frequency sound in the range that humans can hear (~20 kHz), in either a random or orderly form. However, at the terahertz frequencies in the regime of phonon laser applications, more difficulties arise. The problem stems from the fact that sound travels much slower than light. This means that the ...

  4. Mechanism of sonoluminescence - Wikipedia

    en.wikipedia.org/wiki/Mechanism_of_sonoluminescence

    When the frequency of the sound field approaches the natural frequency of the bubble, it will result in large amplitude oscillations. The Keller–Miksis equation takes into account the viscosity, surface tension, incident sound wave, and acoustic radiation coming from the bubble, which was previously unaccounted for in Lauterborn's calculations.

  5. Ultrasound - Wikipedia

    en.wikipedia.org/wiki/Ultrasound

    Ultrasound is sound with frequencies greater than 20 kilohertz. [1] This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.

  6. Acousto-optics - Wikipedia

    en.wikipedia.org/wiki/Acousto-optics

    Acousto-optics is a branch of physics that studies the interactions between sound waves and light waves, especially the diffraction of laser light by ultrasound (or sound in general) through an ultrasonic grating. A diffraction image showing the acousto-optic effect.

  7. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high frequency these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. The electromagnetic waves in each of these bands have different characteristics, such as how they are ...

  8. Acoustics - Wikipedia

    en.wikipedia.org/wiki/Acoustics

    This falls within the domain of physical acoustics. In fluids, sound propagates primarily as a pressure wave. In solids, mechanical waves can take many forms including longitudinal waves, transverse waves and surface waves. Acoustics looks first at the pressure levels and frequencies in the sound wave and how the wave interacts with the ...

  9. Perception of infrasound - Wikipedia

    en.wikipedia.org/wiki/Perception_of_infrasound

    A Doppler shift occurs when there is relative motion between a sound source and a perceiver and slightly shifts the perceived frequency of the sound. When a flying bird is changing direction, the amplitude of the Doppler shift between it and an infrasonic source would change, enabling the bird to locate the source.

  1. Related searches what feature makes sutures stronger than light waves because sound frequency

    lower frequency ultrasoundultrasound sound frequency