enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    [10] [11] For an isentropic process, if also reversible, there is no transfer of energy as heat because the process is adiabatic; δQ = 0. In contrast, if the process is irreversible, entropy is produced within the system; consequently, in order to maintain constant entropy within the system, energy must be simultaneously removed from the ...

  3. Brayton cycle - Wikipedia

    en.wikipedia.org/wiki/Brayton_cycle

    isentropic process – the heated, pressurized air then gives up its energy, expanding through a turbine (or series of turbines). Some of the work extracted by the turbine is used to drive the compressor. isobaric process – heat rejection (in the atmosphere). Actual Brayton cycle: adiabatic process – compression; isobaric process – heat ...

  4. Steam turbine - Wikipedia

    en.wikipedia.org/wiki/Steam_turbine

    The steam turbine is a form of heat engine that derives much of its improvement in thermodynamic efficiency from the use of multiple stages in the expansion of the steam, which results in a closer approach to the ideal reversible expansion process. Because the turbine generates rotary motion, it can be coupled to a generator to harness its ...

  5. Rankine cycle - Wikipedia

    en.wikipedia.org/wiki/Rankine_cycle

    The input energy required can be easily calculated graphically, using an enthalpy–entropy chart (h–s chart, or Mollier diagram), or numerically, using steam tables or software. Process 3–4: Isentropic expansion: The dry saturated vapour expands through a turbine, generating power. This decreases the temperature and pressure of the vapour ...

  6. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    Adiabatic : No energy transfer as heat during that part of the cycle (=). Energy transfer is considered as work done by the system only. Isothermal : The process is at a constant temperature during that part of the cycle (=, =). Energy transfer is considered as heat removed from or work done by the system.

  7. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    An isentropic process is customarily defined as an idealized quasi-static reversible adiabatic process, of transfer of energy as work. Otherwise, for a constant-entropy process, if work is done irreversibly, heat transfer is necessary, so that the process is not adiabatic, and an accurate artificial control mechanism is necessary; such is ...

  8. Lenoir cycle - Wikipedia

    en.wikipedia.org/wiki/Lenoir_cycle

    Utilizing that, for the isobaric process, T 3 /T 1 = V 3 /V 1, and for the adiabatic process, T 2 /T 3 = (V 3 /V 1) γ−1, the efficiency can be put in terms of the compression ratio, = (), where r = V 3 /V 1 is defined to be > 1. Comparing this to the Otto cycle's efficiency graphically, it can be seen that the Otto cycle is more efficient at ...

  9. Otto cycle - Wikipedia

    en.wikipedia.org/wiki/Otto_cycle

    This process is intended to represent the ignition of the fuel-air mixture and the subsequent rapid burning. Process 3–4 is an adiabatic (isentropic) expansion (power stroke). Process 4–1 completes the cycle by a constant-volume process in which heat is rejected from the air while the piston is at bottom dead center.