Search results
Results from the WOW.Com Content Network
A schematic diagram of the morphology of coastal/marine terraces. Periodic uplift will force old shorelines up, which create the terrace treads. Wave erosion on these old shorelines will produce the scarp, or terrace riser. A satellite image of the Himalayas and the rainshadow effect.
Wave-cut platform at Southerndown, South Wales, UK. A wave-cut platform, shore platform, coastal bench, or wave-cut cliff is the narrow flat area often found at the base of a sea cliff or along the shoreline of a lake, bay, or sea that was created by erosion. Wave-cut platforms are often most obvious at low tide when they become visible as huge ...
Coastal erosion is the loss or displacement of land, or the long-term removal of sediment and rocks along the coastline due to the action of waves, currents, tides, wind-driven water, waterborne ice, or other impacts of storms.
A tetrapod is a form of wave-dissipating concrete block used to prevent erosion caused by weather and longshore drift, primarily to enforce coastal structures such as seawalls and breakwaters. Tetrapods are made of concrete , and use a tetrahedral shape to dissipate the force of incoming waves by allowing water to flow around rather than ...
Coastal sediment transport (a subset of sediment transport) is the interaction of coastal land forms to various complex interactions of physical processes. [1] [2] The primary agent in coastal sediment transport is wave activity (see Wind wave), followed by tides and storm surge (see Tide and Storm surge), and near shore currents (see Sea#Currents) . [1]
A marine terrace represents the former shoreline of a sea or ocean. It can be formed by marine abrasion or erosion of materials comprising the shoreline (marine-cut terraces or wave-cut platforms); the accumulations of sediments in the shallow-water to slightly emerged coastal environments (marine-built terraces or raised beach); or the bioconstruction by coral reefs and accumulation of reef ...
The upper curve shows the critical erosion velocity in cm/s as a function of particle size in mm, while the lower curve shows the deposition velocity as a function of particle size. Note that the axes are logarithmic. The plot shows several key concepts about the relationships between erosion, transportation, and deposition.
Furthermore, shore platforms are formed by denudation and marine-built terraces arise from accumulations of materials removed by shore erosion. [2] Thus, a marine terrace can be formed by both erosion and accumulation. However, there is an ongoing debate about the roles of wave erosion and weathering in the formation of shore platforms. [10]