Search results
Results from the WOW.Com Content Network
Another example is the p-adic logarithm, the inverse function of the p-adic exponential. Both are defined via Taylor series analogous to the real case. [98] In the context of differential geometry, the exponential map maps the tangent space at a point of a manifold to a neighborhood of that point. Its inverse is also called the logarithmic (or ...
Such complex logarithm functions are analogous to the real logarithm function: >, which is the inverse of the real exponential function and hence satisfies e ln x = x for all positive real numbers x. Complex logarithm functions can be constructed by explicit formulas involving real-valued functions, by integration of 1 / z {\displaystyle 1/z ...
The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as follows: since the inverse function of f(w) = e w is termed the logarithm, it makes sense to call the inverse "function" of the product we w the "product logarithm".
A user will input a number and the Calculator will use an algorithm to search for and calculate closed-form expressions or suitable functions that have roots near this number. Hence, the calculator is of great importance for those working in numerical areas of experimental mathematics. The ISC contains 54 million mathematical constants.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
He give specific logarithm quantities to be added or subtracted in different cases: 23025842 + 0 or 46051684 + 00, or 69077527 + 000, or 92103369 + 0000, or 115129211 + 00000; These correspond to 10,000,000*ln(10), 10,000,000*ln(100), etc. Chapter 5 presents four problems in proportionality and their solution using Napier's logarithms.
Inverse trigonometric functions (arcsin, arccos, arctan, etc.) and inverse hyperbolic functions (arsinh, arcosh, artanh, etc.) can be defined in terms of logarithms and their principal values can be defined in terms of the principal values of the logarithm.
Branch points fall into three broad categories: algebraic branch points, transcendental branch points, and logarithmic branch points. Algebraic branch points most commonly arise from functions in which there is an ambiguity in the extraction of a root, such as solving the equation w 2 = z {\displaystyle w^{2}=z} for w {\displaystyle w} as a ...