enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lill's method - Wikipedia

    en.wikipedia.org/wiki/Lill's_method

    Finding roots of 3x 2 + 5x − 2. Lill's method can be used with Thales's theorem to find the real roots of a quadratic polynomial. In this example with 3x 2 + 5x − 2, the polynomial's line segments are first drawn in black, as above. A circle is drawn with the straight line segment joining the start and end points forming a diameter.

  3. Fundamental pair of periods - Wikipedia

    en.wikipedia.org/wiki/Fundamental_pair_of_periods

    The parallelogram with vertices (,, +,) is called the fundamental parallelogram. While a fundamental pair generates a lattice, a lattice does not have any unique fundamental pair; in fact, an infinite number of fundamental pairs correspond to the same lattice.

  4. Hooper's paradox - Wikipedia

    en.wikipedia.org/wiki/Hooper's_paradox

    The brown parallelogram is the overlapping area of the two triangles. Upon close inspection one can notice that the triangles of the dissected shape are not identical to the triangles in the rectangle. The length of the shorter side at the right angle measures 2 units in the original shape but only 1.8 units in the rectangle.

  5. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Given a norm, one can evaluate both sides of the parallelogram law above. A remarkable fact is that if the parallelogram law holds, then the norm must arise in the usual way from some inner product. In particular, it holds for the p {\displaystyle p} -norm if and only if p = 2 , {\displaystyle p=2,} the so-called Euclidean norm or standard norm.

  6. Pappus's area theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_area_theorem

    The extended parallelogram sides DE and FG intersect at H. The line segment AH now "becomes" the side of the third parallelogram BCML attached to the triangle side BC, i.e., one constructs line segments BL and CM over BC, such that BL and CM are a parallel and equal in length to AH.

  7. Levi-Civita parallelogramoid - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_parallelogramoid

    The idea of sliding the one straight line along the other gives way to the more general notion of parallel transport. Thus, assuming either that the manifold is complete, or that the construction is taking place in a suitable neighborhood, the steps to producing a Levi-Civita parallelogram are: Start with a geodesic AB and another geodesic AA′.

  8. Curve sketching - Wikipedia

    en.wikipedia.org/wiki/Curve_sketching

    Specifically, draw a diagonal line connecting two points on the diagram so that every other point is either on or to the right and above it. There is at least one such line if the curve passes through the origin. Let the equation of the line be qα+pβ=r. Suppose the curve is approximated by y=Cx p/q near the origin.

  9. Base (geometry) - Wikipedia

    en.wikipedia.org/wiki/Base_(geometry)

    In a triangle, any arbitrary side can be considered the base. The two endpoints of the base are called base vertices and the corresponding angles are called base angles. The third vertex opposite the base is called the apex. The extended base of a triangle (a particular case of an extended side) is the line that contains the base.