Search results
Results from the WOW.Com Content Network
Among all shapes of constant width that avoid all points of an integer lattice, the one with the largest width is a Reuleaux triangle. It has one of its axes of symmetry parallel to the coordinate axes on a half-integer line. Its width, approximately 1.54, is the root of a degree-6 polynomial with integer coefficients. [17] [19] [20]
The Blaschke–Lebesgue theorem says that the Reuleaux triangle has the least area of any convex curve of given constant width. [19] Every proper superset of a body of constant width has strictly greater diameter, and every Euclidean set with this property is a body of constant width.
Shrink the triangle to 1 / 2 height and 1 / 2 width, make three copies, and position the three shrunken triangles so that each triangle touches the two other triangles at a corner (image 2).
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
The set of geometric primitives is based on the dimension of the region being represented: [1]. Point (0-dimensional), a single location with no height, width, or depth.; Line or curve (1-dimensional), having length but no width, although a linear feature may curve through a higher-dimensional space.
The Kepler triangle is a right triangle whose sides are in geometric progression. If the sides are formed from the geometric progression a, ar, ar 2 then its common ratio r is given by r = √ φ where φ is the golden ratio. Its sides are therefore in the ratio 1 : √ φ : φ. Thus, the shape of the Kepler triangle is uniquely determined (up ...
Dilation is commutative, also given by = =. If B has a center on the origin, then the dilation of A by B can be understood as the locus of the points covered by B when the center of B moves inside A. The dilation of a square of size 10, centered at the origin, by a disk of radius 2, also centered at the origin, is a square of side 14, with ...
Alternatively, a triangle can be transformed into one such rectangle by first turning it into a parallelogram and then turning this into such a rectangle. By doing this for each triangle, the polygon can be decomposed into a rectangle with unit width and height equal to its area.